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S I M P L E  M A T H E M A T I C A L  M O D E L S  O F  T H E  E X P L O S I V E  

F A I L U R E  O F  A S P A C E C R A F T *  

A. B. Kiselev UDC 539.3 +539.4 

Here, we propose simple mathematical models that make it possible to calculate the number of fragments 

formed in the failure of  a spacecraft as a result of an internal explosion. The models also determine the initial velocity of the 

fragments at the moment of  failure. 

1. Models of  Failure. We make the following simplifying assumptions. 

1. The hull of  the spacecraft is modeled by a cylindrical or spherical shell. 

2. The shell is thin: h/r < <  1 (where h is the thickness and r is the radius of the shell). 

3. The effect of  the explosion is modeled by the pressure p = p(t), which is dependent on time t and is uniformly 

distributed over the inside surface of the shell. The characteristic time of  action of the load z > >  h/a o (where a 0 is sonic 

velocity in the shell material). 

4. The material of  the shell is elastoviscoplastic and the deformation process is adiabatic. 

5. The limiting unit dissipation [1, 2] is taken as the criterion of the beginning of failure. 

6. It is assumed that fracture of the shell occurs due to the expenditure of elastic energy accumulated in the shell by 

the moment t = t. at which failure begins; the work of the external forces during fracture is ignored; cleavage fracture is not 

considered [3, 4]. 

By virtue of  the first three assumptions, the problem of deformation of a thin shell can be regarded in a first 

approximation as a homogeneous cylindrical or spherical problem. 

Then the equation of  motion has the form 

p(t) ~o 
p/~ - a (1.1) 

h r '  

where p is the running density; v is radial velocity; r is the running value of shell radius; a o is the circumferential force (the 

stress averaged over the thickness of the shell); the dot denotes a substantial derivative with respect to time; in (1.1) and below, 

c~ = 1 corresponds to the cylindrical case, c~ = 2 corresponds to the spherical case. 

The rate of  circumferential deformation is determined as 

~J 
G0 = - ,  

r 

while other strains are absent due to the thinness of the shell. 

The equation of the mass conservation law has the form b/P = -t~e0. It follows from this equation that 

p = poexp (-aco). 

We take the equations of state of the elastoviscoplastic material in the Pezhin form [5]; with allowance that in the 
cylindrical case 
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ao = a + So, crz = a + Sz ,  

while in the spherical case 

O" 0 = O" + S o ,  o', a = o'o, 

a,  = a + S ,  = O, 

~r, = ~ + S ~  = 0, 

So + S ,  + S ,  = O. 

2 S o + S ,  = O. 

these equations reduce to the form 

1 4 #--S0 - -  2 1 2  ISol - ~ # o  /t(lSol - - ~ Jo ) ,  
ISol " 

3 
~o = a ~ So.  

Here,/~ is the shear modulus; ~ is the absolute viscosity of the material; J0 is the static elastic limit in simple tension; H(x) 

is the Heaviside unit function. Here, the stress tensor aij is broken up into spherical a5ij and deviatoric Sij parts (aij = a6ij + 

Sij) and we assume that the strain rates can also be divided into elastic and plastic rates; the plastic flow is incompressible: 

in the cylindrical case and 

= -  = ~+g,~ 0, 2 g ; + g ~ = 0  

in the spherical case. 

The unit (per unit mass) elastic energy E and mechanical dissipation D are calculated from the formulas 

t t  =o/O_0 
P ~e 

o o 

Specific internal energy U = E + D. 

The rates of  elastic and plastic deformation are calculated from the formulas 

-r ~0 

The limiting unit dissipation is the criterion of the beginning of failure of the shell. For the chosen model of the 

medium, this quantity reduces to the mechanical dissipation: 

t .  

0 

(D. is the constant of  limiting unit dissipation, determined from experiments involving the clevage fracture of  plates in an in- 
plane collision [1, 2]). 

The number of  fragments expected to be formed by explosion of the shell < N > is found from the balance of elastic 

strain energy and the work done in the rupture of the material. For a cylindrical shell, the balance equation has the form 

po(Trdoh)E. = 7 h ( N ) ,  

where 3' is the specific energy expended on the formation of a unit of free surface; E, is the density of  stored energy at the 
moment t = t,; d o is the initial diameter of the shell. Then for the cylindrical shell 

N = [r podoE.] (1.2) --V-, 

(the bracket denotes the integral part of the number). 
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Fig. 1 

We must make one more simplifying assumption to obtain the formula for the number of  fragments of  the spherical 

shell. We assume that all of the fragments are of the same size (the characteristic area of  the outside surface of  a fragment is 

s, Fig. 1) and that the ratio of  s to the square of the half-perimeter p of the contour bounding this surface is constant: 

s 
k = ~ .  

We then take 0.2 as the value of the form factor k (k = 0.25 for a square, k = v ~ 9  for a regular triangle, and k = lh r  for 

a circle). We can also discard the assumption that all of the fragments are of the same size and assume that the masses (and, 

thus, the areas s) of the fragments are distributed in accordance with a certain law. Here, we take the Rosing--Rammler  law, 

which is widely used and is a special case of general probability representations [6]: 

,,<q,: (- 

Here, M(q) is the total mass of the fragments having a mass less than q; q0 is the characteristic mass; n is an exponent ensuring 

the uniformity of the fragmentation. The entire failure spectrum can be predicted in the given case, but we will limit ourselves 

here to solving the problem of the fragmentation of a spherical shell within the framework of the assumptions made above. 

We then use the following system of equations to calculate the mean number < N > of fragments formed from the 

spherical shell: 

a m ( : : >  = 4 v) = 

From here, we find the number of fragments N of the spherical shell: 

[Trk ( podoE. ~ ~] 
N = [ " k - ' - - ~ )  J" (1.3) 

The initial velocity of the fragments V 0 is assumed to be equal to the radial rate of expansion of the shell at the moment of 

fracture: 

W 0 ~ 13 t : t . "  

2. Results of  Calculat ions,  The main calculations were performed for duralumin shells with the diameter d o = 3 m 

and thickness h = 0.003 m: P0 = 2700 kg/m3;/x = 27.6 GPa; ~/ = 10 kPa.sec; Jo = 0.29 GPa; 3' = 400 kJ/m2; D, = 30 

kJ/kg. Internal pressure was calculated from the formula 

po p(t) 
(i + t / , - )  z '  

where P0 is the initial pressure on the shell; r is the characteristic time of action of the load. 
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TABLE 1 

po, GPa 

0,01 
0,01 
0,01 
0,1 
0,1 
0,1 
1 
1 
1 

10 
10 
10 

�9 , msec 

1,00 
I0,00 

100,00 
0,10 
1,00 

10,00 
0,01 
1,00 

100,00 
0,01 
0,10 
1,00 

N 

979 
990 
992 
980 
.026 
044 
980 
242 
268 
181 
~009 
1213 

"1"- 

t/h !U O, m/sec 

3,21 439 
3,13 1057 
3,17 1148 
3,21 541 
3,06 2539 
3,01 3080 
3,21 547 
2,53 7481 
2,48 7903 
2,66 6096 
1,56 18203 
1,42 21114 

,, lBsec I 

1,640 
0,951 
0,904 
0,996 
0,277 
0,242 
0,899 
0,063 
0,061 
0,043 
0,018 
0,017 

(d). i 
0,207 
0,189 
0,186 
0,196 
0,145 
0,137 
0,194 
0,085 
0,083 
0,0?9 
0,048 
0,046 

I., kPa-sec 

4,28 
8,31 
8,92 
4.95 
9,40 

23,30 
4,95 

57,70 
60,80 
47,70 

141,00 
164,00 

TABLE 2 

po, GPa 

0,01 
0,01 
0,1 
0,1 
1 
1 
5 
5 
5 

10 
10 
10 

,rnsec N.10 -a 

0,00 [ 1097 
10,00 [ 1097 
1,00 1098 
0,00 1100 
0,01 1098 
0,00 1257 
0,01 1099 
0,I0 1670 
1,00 1919 
0,01 1173 
0,10 2294 
1,00 2613 

I/h U O, m/sec 

1,52 597 
1,52 653 
1,51 2021 
1,51 2409 
1,52 447 
1,41 7632 
1,51 3105 
1,23 12390 
I,I5 15104 
1,47 6145 
1,05 18170 
0,97 20999 

t., msec (~ ) .  I., kPa.sec 

0,688 I 0,0402 6,23 
0,660 I 0,0402 6,53 
0,205 [ 0,0400 15,50 
0,187 I 0,0401 18,20 
0,415 I 0,0402 4,95 
0,057 0,0366 56,50 
0,078 0 ,0398  21,40 
0,026 I 0,0273 93,30 
0,02310,0252,113,oo 

: 0,040 [ 0,0357 47,50 
0,017 0.022, 137,00 
0,016 0,0210 157,00 

Some of  the results of the calculations are shown in Tables 1 (cylindrical shell) and 2 (spherical shell) and Figs. 2 and 

3 (a - -  cylindrical shell, b - -  spherical shell). We used the following notation: (~ ) .  is the plastic strain accumulated by the 

moment t = t . ;  l is the characteristic dimension of a fragment (l = 7rd0/N for the cylindrical shell and l = 2 d o ~  , for 

the spherical shell); I .  is the impulse of the applied load: 

t=  

i. = f p(t) dt. 
o 

It is evident from the calculations that the number of fragments N depends heavily on the character of the applied load 

p = p(t): N increases with an increase in the intensity of the load P0 and its duration r. In the context of the formulation of 

the problem, this result is a consequence of the sensitivity of the material to the rate of plastic deformation. An increase in Po 

and r is accompanied by a decrease in plastic strains accumulated in the shell by the moment when failure begins t = t,. 

The impulse I. transmitted to the shell by the moment t = t ,  determines the number of fragments N. Conversely, the 

number N can be used to determine I.. This is clear from Fig. 2, which shows the dependence of N on I.. The theoretical 

points obtained with different combinations of Po and r lie on single curves. A similar pattern is seen for the dependence of 

the initial velocity of the fragments V o on I.. The same curve (Fig. 3) describes the cylindrical and spherical shells. The 

dependences of  N on I. and V o on I.  are close to linear; a nonlinear section is seen only at small I.. 

Let us compare the results of our calculations with well-known experimental and theoretical results on shell 
fragmentation published in the literature. 
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Many investigations [7-14, etc.] have examined the fragmentation of cylindrical metallic (mainly steel) shells. Formulas 
for the mean number of fragments have been obtained from theoretical studies based on different assumptions regarding the 

mechanisms responsible for deformation and fracture. The formulas in [7-12] have the general form: 

7rdoVo (2.1) 
N " ~  

Le 

Here, L is the characteristic linear dimension of the ring (thickness, radius, etc.); c is the characteristic velocity. As was shown 
in [11], the formula from [8] can be represented in the form 

7r~p / Po 
N = ,ov6~ I, 

and from [9] - -  in the form 

~---Z Jov po ~ a~), 

where ef is the critical strain; v c is the critical collision velocity. 

The linear dependence of the number of fragments on the radial velocity of the cylinder (2.1) has been confirmed by 
a number of  experiments [13]. 

A different (quadratic) dependence of N on V 0 was obtained in [14]: 

= 37r(1jod + rlVo)2(2doEoT) -1. (2.2) N 
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Here, E o is the elastic modulus; the material was assumed to be viscoplastic; ef < <  1; work on fracture of  the material was 

completed as a result of  the accumulation of elastic energy. 

The experiments (steel tubes, h/d o = 0.021-0.025) conducted in [14] are satisfactorily described by this formula. It 

follows from them that the width of the fragments is 2-8 times greater than their thickness. This finding is consistent with our 

results (see Table 1). 

The expressions found here for the dependence of the number of  fragments on V 0 (1.2), (1.3) are not as explicit as 

(2.1) or (2.2). However, it is evident from the calculated results that in both cases (cylindrical and spherical shells) the 

dependences are close to quadratic for small I .  and close to linear for large I.  (see Figs. 2 and 3, Tables 1 and 2). 

The authors of [15, 16] presented results of expansion of cylindrical and spherical shells of  different materials due to 

explosion. Various failure criteria were examined for possible use in practical calculations. It was shown that the criterion used 

in the present investigation [3, 4] (Proposition 6) gives good results. Unfortunately, no data were reported on the fragmentation 

of the shells. 

The study [17] examined the fragmentation of a cylindrical shell in a formulation somewhat different from that used 

above, to wit: the radial force (the stress averaged over the thickness of the shell) o r was not negligible relative to the 

circumferential force a 0 and it was assumed that or = -p( t) /2  (since the pressure p(t) was assigned on the inside surface, so 

that o r = -p( t ) ,  while the outside surface was free of loads - -  a r = 0). Here, we adopted the assumption usually made in the 

theory of thin shells: or = 0. As a result, while the expression go = 3/2S0 - -  1/2p(t), was obtained in [17] for the 

circumferential force, we obtained ~0 = 3/2S0. There is therefore a marked difference between the calculated number of 

fragments shown in Table 1 for our study and for [17], particularly when large internal pressures p(t) are assigned. The case 

of spherical geometry was not considered in [17]. 

Thus, as a first approximation, the simple models proposed here make it possible to evaluate the number of  fragments 

and their initial velocity in the rupture of the hull of  a spacecraft as a result of an internal explosion. Subsequent refinements 

of the model should focus first of  all on the dependence of the load on time and its distribution over the surface of  the craft. 

Next in order of importance are refining the distribution of the fragments according to mass, allowing for the additional 

acceleration of fragments of different masses by the explosion products after rupture of the shell, allowing for the actual 

geometry of the craft, more fully accounting for the actual physical processes that accompany the high-rate deformation and 

fracture of  the structural materials, and refining the main parameters of the model. 
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